
Inheritance
Lecture 18

M
o
n
d
ay

,
Ja

n
u
ar

y
 1

3
,
2
0
2
0

1

Implicit Derived-Class Object to Base-Class
Object Conversion

• baseClassObject = derivedClassObject;

• This will work

• Remember, the derived class object has more members than the
base class object

• Extra data is not given to the base class

• derivedClassObject = baseClassObject;

• May not work properly

• Unless an assignment operator is overloaded in the derived class,
data members exclusive to the derived class will be unassigned

• Base class has less data members than the derived class

• Some data members missing in the derived class object

M
o
n
d
ay

,
Ja

n
u
ar

y
 1

3
,
2
0
2
0

2

Contd..

• Four ways to mix base and derived class pointers and objects:

• Referring to a base-class object with a base-class pointer

• Allowed

• Referring to a derived-class object with a derived-class pointer

• Allowed

• Referring to a derived-class object with a base-class pointer

• Possible syntax error

• Code can only refer to base-class members, or syntax error

• Referring to a base-class object with a derived-class pointer

• Syntax error

• The derived-class pointer must first be cast to a base-class pointer

M
o
n
d
ay

,
Ja

n
u
ar

y
 1

3
,
2
0
2
0

3

Composition vs. inheritance

• "is a" relationship

• Inheritance

• "has a" relationship

• Composition - class has an object from another class as a
data member

 Employee “is a” BirthDate; //Wrong!

 Employee “has a” BirthDate;//Composition

M
o
n
d
ay

,
Ja

n
u
ar

y
 1

3
,
2
0
2
0

4

Virtual functions
Unit-6

M
o
n
d
ay

,
Ja

n
u
ar

y
 1

3
,
2
0
2
0

5

•Polymorphism in inheritance
hierarchies ??

M
o
n
d
ay

,
Ja

n
u
ar

y
 1

3
,
2
0
2
0

6

Polymorphism

• Enables us to “program in the general” rather than “program
in the specific”

• Programs that process objects of classes that are part of the
same class hierarchy as if they are objects of the base class

M
o
n
d
ay

,
Ja

n
u
ar

y
 1

3
,
2
0
2
0

7

Polymorphism

• One function can cause different actions to occur, depending
on the type of the object on which the function is invoked

M
o
n
d
ay

,
Ja

n
u
ar

y
 1

3
,
2
0
2
0

8

Static and Dynamic Binding

• When a reference to a member function is resolved at compile
time, then static binding is used.

• When a reference to a member function can only be resolved at
run-time, then this is called dynamic binding.

M
o
n
d
ay

,
Ja

n
u
ar

y
 1

3
,
2
0
2
0

9

Polymorphism and Dynamic Binding
• To implement polymorphism, the programming language must

support dynamic binding.

• Polymorphism----- a concept

• Dynamic binding -----implementation M
o
n
d
ay

,
Ja

n
u
ar

y
 1

3
,
2
0
2
0

10

Polymorphism and Dynamic Binding
• Classes rectangle, square is derived from class Quadrilateral

• area() is a member of all
• But the way it is calculated is different

• Program invokes area() through quadrilateral class pointer,
C++ dynamically chooses the correct function
• polymorphism

M
o
n
d
ay

,
Ja

n
u
ar

y
 1

3
,
2
0
2
0

11

Polymorphism

• Polymorphism facilitates adding new classes to a system with
minimal modifications to its code

M
o
n
d
ay

,
Ja

n
u
ar

y
 1

3
,
2
0
2
0

12

Upcasting

• An Quadrilateral* can hold a square*

• Because of the “is-a” relationship

• A square can take the place of an Employee object

• Hence, an array of Quadrilateral* can hold
pointers to a mixture of the two types

M
o
n
d
ay

,
Ja

n
u
ar

y
 1

3
,
2
0
2
0

13

The Goal

• To treat all objects as base objects
• via a pointer-to-base

• But to have their behavior vary automatically
• depending on the dynamic type of the object

M
o
n
d
ay

,
Ja

n
u
ar

y
 1

3
,
2
0
2
0

14

Quadrilateral

Square

etc.

Rectangle
Quadrilateral

• Through the quadrilateral class pointer (base class object) we
call the function area(), and biding is done at run-time

M
o
n
d
ay

,
Ja

n
u
ar

y
 1

3
,
2
0
2
0

15

Polymorphism in C++

• Virtual Function

• A non-static member function prefaced by the virtual specifier.

• It tells the compiler to generate code that selects the
appropriate version of this function at run-time.

M
o
n
d
ay

,
Ja

n
u
ar

y
 1

3
,
2
0
2
0

16

Example
class quadrilateral

{ public:

 virtual void area() { }; };

M
o
n
d
ay

,
Ja

n
u
ar

y
 1

3
,
2
0
2
0

17

class square : public quadrilateral

{ int side;

 public: square(int i=1) { side=i; }

 void area() { cout<<"\n Area of square is : "<<(side*side); }};

class rectangle : public quadrilateral

{ int side1; int side2;

 public: rectangle(int i,int j) { side1=i; side2=j; }

 void area() { cout<<"\n Area of rectangle is : <<(2*side1*side2);}

void main()

{ quadrilateral *q=new

square(3);

 q->area(); delete q;

 q=new rectangle(2,4);

 q->area();}

Virtual function

• With virtual functions, the type of the object being pointed to,
not the type of handle, determines which version of a virtual
function to invoke.

• Dynamic binding

M
o
n
d
ay

,
Ja

n
u
ar

y
 1

3
,
2
0
2
0

18

Dynamic vs. static binding

• When a virtual function is called by referencing a specific
object by name (.), the binding is static

• Dynamic binding with virtual functions occurs only off pointer M
o
n
d
ay

,
Ja

n
u
ar

y
 1

3
,
2
0
2
0

19

Assignment

• Difference between Static and dynamic binding.

M
o
n
d
ay

,
Ja

n
u
ar

y
 1

3
,
2
0
2
0

20

