Inheritance

Lecture 18




Implicit Derived-Class Object to Base-Class
Object Conversion

- baseClassObject = derivedClassObject;
This will work

Remember, the derived class object has more members than the
base class object

o
AN
o
(Q\]
o
—i
>
p—
©
>
[
©
s
>
©
<
=
=

Extra data is not given to the base class
- derivedClassObject = baseClassObject;
May not work properly

Unless an assignment operator is overloaded in the derived class,
data members exclusive to the derived class will be unassigned

Base class has less data members than the derived class
Some data members missing in the derived class object




Contd..

* Four ways to mix base and derived class pointers and objects:

Referring to a base-class object with a base-class pointer
Allowed

Referring to a derived-class object with a derived-class pointer
Allowed

Referring to a derived-class object with a base-class pointer
Possible syntax error

o
AN
o
(Q\]
o
—
>
p—
©
>
[
©
—
>
©
<
=
o

Code can only refer to base-class members, or syntax error

Referring to a base-class object with a derived-class pointer
Syntax error

The derived-class pointer must first be cast to a base-class pointer




Composition vs. inheritance

* "is a" relationship

Inheritance

* "has a" relationship

o
AN
o
(Q\]
o
—i
>
p—
©
>
[
©
s
>
©
<
=
=

Composition - class has an object from another class as a
data member

Employee “isa” BirthDate; //wrong!
Employee “has a” BirthDate;//Composition




Virtual functions

Unit-6




*Polymorphism in inheritance
hierarchies ??

o
AN
o
(Q\]
o
—i
>
p—
©
>
[
©
s
>
©
<
=
=




Polymorphism

* Enables us to “program in the general” rather than “program
in the specific”

o
AN
o
(Q\]
o
—i
>
p—
©
>
[
©
s
>
©
<
=
=

* Programs that process objects of classes that are part of the
same class hierarchy as if they are objects of the base class




Polymorphism

* One function can cause different actions to occur, depending
on the type of the object on which the function is invoked

o
AN
o
(Q\]
o
—i
>
p—
©
>
[
©
s
>
©
<
=
=




Static and Dynamic Binding

* When a reference to a member function is resolved at compile
time, then static binding is used.

o
AN
o
(Q\]
o
—i
>
p—
©
>
[
©
s
>
©
<
=
=

* When a reference to a member function can only be resolved at
run-time, then this is called dynamic binding.




Polymorphism and Dynamic Binding
* To implement polymorphism, the programming language must
support dynamic binding.
Polymorphism----- a concept

Dynamic binding ----- implementation

o
AN
o
(Q\]
o
—i
>
p—
©
>
[

©
s
>
©

<

=

=




Polymorphism and Dynamic Binding

* Classes rectangle, square is derived from class Quadrilateral
 area() is a member of all

But the way it is calculated is different

* Program invokes area() through quadrilateral class pointer,
C++ dynamically chooses the correct function

polymorphism

o
AN
o
(Q\]
o
—i
>
p—
©
>
[
©
s
>
©
<
=
=




Polymorphism

* Polymorphism facilitates adding new classes to a system with
minimal modifications to its code

o
AN
o
(Q\]
o
—i
>
p—
©
>
[

©
s
>
©

<

=

=




Upcasting

An Quadrilateral* can hold a square*
Because of the “is-a” relationship

A square can take the place of an Employee object

Hence, an array of Quadrilateral* can hold
pointers to a mixture of the two types



The Goal

To treat all objects as base objects

via a pointer-to-base

But to have their behavior vary automatically
depending on the dynamic type of the object

P

P

Quadl’ilateral Rectangle

Square Quadrilateral




* Through the quadrilateral class pointer (base class object) we
call the function area(), and biding is done at run-time

o
AN
o
(Q\]
o
—i
>
p—
©
>
[
©
s
>
©
<
=
=




Polymorphism in C++

* Virtual Function

Monday, January 13, 2020

A non-static member function prefaced by the virtual specifier.

It tells the compiler to generate code that selects the
appropriate version of this function at run-time.




r Example

class quadrilateral
{ public:
virtual void area() { }; };

o
N
o
N
™
—
>
p—
<
S
c
S
<
>
m~
=]
c
=

class square : public quadrilateral
{ Intside;
public: square(int i=1) { side=i; }
void area() { cout<<"\n Area of square is : "<<(side*side); }};
class rectangle : public quadrilateral
{int sidel; int sideZ;
public: rectangle(int i,int j) { sidel=i; side2=j; }
void area() { cout<<"\n Area of rectangle is : <<(2*sidel*side?]




Virtual function

* With virtual functions, the type of the object being pointed to,

not the type of handle, determines which version of a virtual
function to invoke.

o
AN
o
(Q\]
o
—i
>
p—
©
>
[
©
s
>
©
<
=
=

* Dynamic binding




Dynamic vs. static binding

* When a virtual function is called by referencing a specific
object by name (.), the binding is static

o
AN
o
(Q\]
o
—i
>
p—
©
>
[
©
s
>
©
<
=
=

* Dynamic binding with virtual functions occurs only off pointer




Assignment

* Difference between Static and dynamic binding.

o
N
o
9\
(97]
—i
e
S
©
=
=
©
S
>
©
=
=
§




